US009461892B2 # (12) United States Patent Epstein et al. # (54) SYSTEM AND METHOD FOR SERVING AND MANAGING INDEPENDENT ACCESS DEVICES (71) Applicant: EarthLink Business, LLC, Atlanta, GA (US) (72) Inventors: Marc Epstein, Los Gatos, CA (US); Mark Collins, Superior, CO (US); Peter Barclay, San Jose, CA (US); Brian Karney, Palo Alto, CA (US); Glenn Ricart, Salt Lake City, UT (US) (73) Assignee: **EarthLink Business, LLC**, Atlanta, GA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal dis- claimer. (21) Appl. No.: 14/610,403 (22) Filed: Jan. 30, 2015 #### (65) **Prior Publication Data** US 2015/0149607 A1 May 28, 2015 #### Related U.S. Application Data - (63) Continuation of application No. 13/310,184, filed on Dec. 2, 2011, now abandoned, which is a continuation of application No. 09/750,500, filed on Dec. 28, 2000, now Pat. No. 8,095,624. - (51) Int. Cl. *H04L 12/24* (2006.01) *G06F 15/173* (2006.01) ### (10) Patent No.: US 9,461,892 B2 (45) **Date of Patent:** *Oct. 4, 2016 (58) **Field of Classification Search**CPC combination set(s) only. See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS | 5,706,427 A * | 1/1998 | Tabuki G06F 21/335 | |---------------|---------|------------------------------------| | 5,778,173 A * | 7/1998 | 726/5
Apte G06Q 20/02
705/75 | | 5,784,463 A | 7/1998 | Chen et al. | | 5,903,721 A | 5/1999 | Sixtus | | 5,974,146 A | 10/1999 | Randle et al. | | 5,987,232 A * | 11/1999 | Tabuki G06F 21/31 | | , , | | 709/229 | | 6,112,243 A | 8/2000 | Downs et al. | | 6,145,084 A * | 11/2000 | Zuili G06F 21/33 | | | | 726/3 | | 6,154,787 A | 11/2000 | Urevig et al. | | 6,189,103 B1 | 2/2001 | Nevarez et al. | | 6,249,836 B1 | 6/2001 | Downs et al. | | 6,338,089 B1 | 1/2002 | Quinlan | | 6,339,423 B1* | 1/2002 | Sampson G05B 19/0425 | | | | 709/219 | | | | | #### (Continued) Primary Examiner — Saket K Daftuar (74) Attorney, Agent, or Firm — Kaplan Breyer Schwarz & Ottesen, LLP #### (57) ABSTRACT A third party service provider can provide data, management, and configuration services to a plurality of unrelated entities. The services are separated from the management and configuration aspect, and a system of trust is arranged to avoid the unrelated parties affecting one another. #### 14 Claims, 2 Drawing Sheets ## US 9,461,892 B2 Page 2 | (56) | | | Referen | ces Cited | 6,826,606 | B2 | 11/2004 | Freeman et al. | |------------------------------|--|----------------------|--------------------------------------|--|---|----------------------|--|----------------------------------| | 6,37
6,55 | 49,338
74,357
57,169 | B1
B1
B1 | 2/2002
4/2002
4/2003 | DOCUMENTS Seamons et al. Mohammed et al. Erpeldinger | 6,826,692
6,829,654
6,829,709
6,892,308
6,898,633 | B1
B1
B1 | 5/2005 | | | 6,73
6,73
6,75
6,76 | 71,286
32,358
38,908
57,710
63,403
23,391 | B1
B1
B2
B2 | 5/2004
5/2004
6/2004
7/2004 | Bonn et al. | 6,928,469
6,957,199
7,080,372
7,127,069
2002/0013847
* cited by example of the | B1
B1
B2
A1 | 10/2005
7/2006
10/2006
1/2002 | Duursma et al.
Fisher
Cole | FIG. 1 To Network Data Center Server Forest #### SYSTEM AND METHOD FOR SERVING AND MANAGING INDEPENDENT ACCESS **DEVICES** #### CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 13/310,184, filed Dec. 2, 2011, which is a continuation of U.S. patent application Ser. No. 09/750,500, filed Dec. 28, 2000, entitled "Architecture for Serving and Managing Independent Access Devices", (now U.S. Pat. No. 8,095,624) the entire disclosures of which are incorporated by reference herein. #### TECHNICAL FIELD The present invention relates an improved architecture for managing multiple independent computer users from a common data center. The architecture is particularly applicable in situations wherein multiple substantially independent groups of devices and their users use services from and are managed from a single data center, such as may be implemented when a company outsources its information tech- 25 nologies (IT) needs rather than maintaining an IT department. The present invention is more generally applicable to providing services from a service provider to multiple independent serviced entities. #### BACKGROUND OF THE INVENTION Most businesses have a full set of computer related needs. For example, a business may need Internet access, software updates, hard disk maintenance, etc. Often businesses have 35 plural servers and printers, as well as other peripherals, connected to a network within an office. Most computer networks are managed by either an in house information technologies (IT) department, or for smaller businesses, an independent computer consultant. 40 a trust may be setup so that the server forest 102 trusts the The IT department or computer consultant handles all day to day maintenance, software updates, archiving, etc. of the entire computer network in an office environment. It is possible to save significant costs by outsourcing the management of computer capabilities. The outsourcing 45 model permits a single data center service provider to utilize the most advanced and presumably expensive hardware and software, which would not be economically feasible for a smaller office environment. By distributing the cost of such expensive hardware and software over numerous indepen- 50 dent customers, and by sharing the resource, each customer can have the use of the best available security, data backup capabilities, etc. For example, a firewall can be implemented that is far more secure, better tested, and more comprehen- One issue faced by such a data center service provider that provides services to numerous independent customers is that of separation and security between the customers. An example of the problem is described with respect to FIG. 1. A server "forest" 102 located at a data center 100 serves 60 to supply configuration, management, software support and services to plural different customers 110, 120, 130, and 140. The server forest is denoted as a single triangle, but may represent a network of servers that meet the definition of a forest as explained below and as is known to those in this art. 65 The customer networks 110, 120, 130 and 140 are termed "customer forests", also as that term is known in the art. 2 A forest is defined as a collection of one or more active directory trees organized as peers and connected by two-way trust relationships between the root domain of each tree. A domain is typically used to refer to collections of one or more computers and users within a single security grouping which are administered as a group. Forests and domains are terms used regularly by those of skill in the art, and are defined in a variety of literature published by Microsoft and other market participants. A forest may also be thought of as a collection of one or more domains that create a single security boundary and management entity. The architecture shown in FIG. 1 provides that a remote server 102 may provide various types of data services, configuration, management and numerous other services 15 typically required of such systems, to the client computers located in each independent customer network or forest 110, 120, 130 and 140. Data services that are typical of those provided may also include e-mail, dial up access, back-up, anti-virus software, telephony functions, and other similar related functions typically provided in such environments. Configuration and management services such as monitoring operability of the various client computers in various customer sites, software distribution, management, password management, security, and access control, etc. are also contemplated. One problem encountered with the use of a remote server to handle multiple independent customers is maintaining separation and security among the various customer sites. More specifically, the architecture of FIG. 1 makes it possible for one of the customers to discover the identity of other customers, and their workstations, servers and other devices, and possibly access data by hacking into another customer's site through the server forest 102. Accordingly, in order to give plural customers the assurance that their identity and data will be maintained separate from other customers of the data center, it is important that adequate separation and security be maintained at the server forest In order for the server to provide the appropriate services, client forest 110, 120, 130, or 140. In this manner, server forest 102 can provide appropriate services to clients 104-108 with full confidence in their identity. However, in order for the clients 104-108 to accept software updates, configuration and management commands, etc. from server forest 102, the clients 104 through 108 must trust the server 102. Accordingly, a two-way trust would be required. The two-way trust results in a compromise of security and separation. More specifically, if the client forests (e.g., 110, 120) trust server forest 102, and the server forest trusts the client forests, then it is possible through the use of a "transitive trust" for the client forests to affect one another through the server forest 102. In view of the foregoing, there exists a need in the art for sive than any firewall that a single small office could afford. 55 an improved method and apparatus for maintaining security and separation among various client forests when connected to a common server forest. > There also exists a need in the art for a technique to provide a set of data services (e.g. shared files backup, remote access, any virus support, etc.) to a plurality of independent client forests and for providing configuration and management of the client forest (e.g. monitoring, software distribution, password and security management, etc.) without compromising the separation among the plural forests. > There also exists a need in the art for providing the authentication typically given by trusts in a manner that avoids the problem of a transitive trust being used by one client forest to compromise the separation and security maintained by the server forest. #### SUMMARY OF THE INVENTION The above and other problems of prior art are overcome in accordance with the present invention which relates to an improved method and apparatus for providing remote data center data services and configuration and management 10 services to a plurality of independent customers, without compromising security or separation. The invention includes defining a predetermined one way relationship, separating services wherein the relationship runs from the service provider to the serviced entity from services wherein the 15 relationship runs from the serviced entity to the service provider, and preferably providing the latter services from a different one or more computers than those from which the former services are provided. In accordance with a preferred exemplary embodiment 20 the invention, the services provided by the data center are divided into two categories: Data Services and Configuration and Management Services. Data services represent items such as remote access, dial in, shared files, etc. In general, data services represent remotely provided services 25 and detailed description of the preferred embodiment. that are desired by the various entities. The configuration and management services represent functionality such as monitoring and software distribution, configuration and management of the various client computers, password and access control, security, etc. In general, configuration and 30 management services represent remote ways of monitoring, configuring, and updating various client computers. Typically, such configuration and management services are scalable, but this is not a requirement. "Trusts" are a defined term to those skilled in the art, and 35 generally allow users of one domain to access services in another domain. Microsoft® Corporation defines a trust as "TRUST RELATIONSHIP: A trust relationship allows users and global groups from another user account database 40 to be used. It is a link between domains that enables pass-through authentication, in which a trusting domain honors the logon authentications of a trusted domain. With trust relationships, a user who has only one user account in one domain can potentially access the entire network. User 45 accounts and global groups defined in a trusted domain can be given rights and resource permissions in a trusting domain, even though those accounts do not exist in the trusting domain's directory database." In simpler form, a trust is generally recognized in the 50 industry as a relationship between two sets of computers (e.g. domains) that allows users in one of the sets of computers to access resources in another set of computers in a secure way. In accordance with the exemplary embodiment of the 55 invention, the data services and configuration and management services are divided into two separate forests, each of which may comprise one or more servers. The forests are operated by a service provider that provides IT services to plural unrelated entities, such as various companies that 60 outsource their IT requirements. A first trust is established so that the data services forest trusts each of the clients' forest, and a second trust is established such that each of the clients trusts the configuration and management forest. In a preferred embodiment, 65 the data services forest also trusts the configuration and management forest. By the foregoing arrangements of trusts, and as shown in further detail with respect to the detailed description below, no client forest trusts another forest which itself trusts a different client forest. Thus, the problem of transitive trusts being used by one client forest to identify or possibly access or corrupt another client forest is eliminated. In an additional embodiment, a service provider implements a method of dividing services to be provided to third parties into two categories. A first category includes services that require that the serviced entity trust the service provider. The second category includes those services that require that the service provider trust the serviced entity. First category services are provided from one forest or set of computers, and second category services are provided another forest or set of computers. Optionally, the computers providing the first set of services are trusted by those providing the second set of services. The arrangement of trusts helps avoid any problems caused by transitive trusts. In more general embodiments, the trust need not be utilized, but instead, any one way relationship may be employed, as described more fully below. The above and other details and objects of the invention will become clearer upon review of the following drawings #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a prior art arrangement wherein the server forest is connected to plural client forests; and FIG. 2 shows a conceptual block diagram of an exemplary embodiment of the present invention. #### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 2 shows a block diagram of exemplary embodiment of the present invention. The arrangement of FIG. 2 includes a server forest 202 and management and configuration forest 204, as well as an exemplary set of client forests 206-211. Each of the client forests 206-211 may include a variety of servers, peripherals, client computers, etc. The service forest and management and configuration forest 202 and 204, respectively, would typically include plural servers. The links 221-226 and 231-236 represent trusts, wherein the arrows indicate which forests trust each other. More specifically, link 221, for example, indicates that service forest 202 trusts client forest 206. Link 233 indicates that client forest 208 trusts management and configuration forest 204. We first note that there are no two-way trusts. Moreover, every client forest (e.g. 207) trusts the configuration and management forest 204. However, management and configuration forest 204 does not trust the service forest 202. As a result of the relationship of the trusts among the forests, there is no possibility for a transitive trust to be used for one of client forests 206-211 to identify or possibly access or corrupt a different client forest. The use of such one way relationships makes it impossible for one of the forests 206-211 to learn the identity of, or to access or corrupt, other ones of the forests 206-211. In operation, service forest 202 provides relevant services to the client forests 206-211. These services may include, but are not limited to, telephony, anti-virus protection, remote access, dial-in services, backup of files, e-mail hosting and forwarding, etc. The architecture of the service forest will be described in more detail below. The configuration and management forest provides services such as, for example, monitoring, software updates, software distribution, security, and password management. If an exemplary client forest 208 receives a software update from the configuration and management forest 204, 5 the client forest 208 can trust the authenticity and validity of the software update, because of the trust relationship indicated as 233. Notably, the exemplary embodiment above describes separation of the management and configuration forest from 10 the service forest. However, the concept of the interrelationship of the relevant trusts may be extended. More specifically, a service provider providing services to multiple independent entities must engage in numerous interactions between itself and the entities managed and serviced. The 15 interactions can be classified into two groups: (1) Those that require that the entity accepting services or management trust the service provider; and (2) those that require that the service provider trust the entity or group being serviced or managed. By splitting the functionality along such lines, and 20 separating the trustee forest (the forest that is required to trust a different entity) from the trusted forest, (i.e. the forest that is trusted by another entity) the transitive trust problem is avoided. It can also be appreciated from FIG. 2 that it is possible 25 to provide a trust such that the service forest 202 trusts the management forest 204. By providing such a relationship, the management forest can also manage the service forest to ensure proper configuration, software updates, etc. 202 to a network. Such a connection permits telephone services, web hosting, email, etc. to be implemented. The connection shown to the network may connect to a telephone network, a data network, or both. Preferably, both an Internet connection and a Public Switched Telephone Net- 35 work (PSTN) connection would be present. It is also notable that the trust relationship can be replaced with one or more other types of relationships in order to achieve substantially the same result. For example, a certificate tree, access control list, or a predetermined token that 40 must be possessed by an entity accessing another entity may be utilized. Whatever the predetermined relationship, the remote service provider is arranged such that the predetermined relationship is one way, and such that a separation of services is implemented. Services where the relationship 45 flows from the service provider to one or more serviced entities form a first set of services, and services where the relationship flows from the serviced entities to the service provider form a second set of services. The first and second sets of services are then provided from different servers or 50 different server forests, or by securely separated software on the same server(s). Moreover, it is noted that while remote IT services are used herein for exemplary purposes, the invention is not limited thereto. Any type of situation wherein services are 55 provided to a plurality of users may benefit from the separation of services wherein a one way relationship flows from the serviced entity to the servicing entity, from services where the one way relationship flows from the servicing phony services, plural mobile users of a wireless service, various business and organizational units, unified messaging, voice mail services, etc. While the above describes the preferred embodiment of the invention, various other modifications and additions will 65 be apparent to those of skill in the art. For example, while we describe herein a situation wherein each customer site is a separate forest containing one domain, that need not be the case. The forest can span multiple customer sites, and can have multiple domains. These and other modifications are intended to be covered by the following claims. What is claimed: 1. A method of providing services from a service provider to a plurality of independent entities, the method comprising: facilitating, on a first set of one or more servers of said service provider, a first set of services that require said first set of one or more servers to trust said independent entities, wherein said trust is established by a first one-way trust that extends from said first set of one or more servers to said independent entities; facilitating, on a second set of one or more servers of said service provider, a second set of services that require said independent entities to trust said second set of one or more servers, wherein said trust is established by a second one-way trust that extends from said independent entities to said second set of one or more servers; providing said first and second set of services to said independent entities based on the first and second one-way trusts, wherein said first and second one-way trusts prevent transitive trust between each entity in said plurality of independent entities. - 2. The method of claim 1 wherein a third one-way trust is FIG. 2 also depicts the connection of the services forest 30 established so that said first set of servers trusts said second set of servers. - 3. The method of claim 2 wherein said first set of servers provides data services and wherein said second set of services provides management and configuration services. - 4. The method of claim 3 wherein each of said independent entities is organized as a single forest. - 5. The method of claim 3 wherein each of said entities is organized as a single domain. - 6. The method of claim 3 wherein at least one of said independent entities is embodied as a forest of computers that spans multiple customer sites. - 7. The method of claim 1 wherein said first set of services comprises at least one of the following: virus protection services, remote access, backup, software sharing, and telephony services, and wherein said second set of services comprises at least one of the following: security, password management, software update, software distribution, access - **8**. A system comprising: - a first set of one or more servers having a first one-way trust connection to a second set of one or more servers; - a third set of one or more servers interacting with the second set of servers through a second one-way trust connection from the second set of servers to the third set of servers, wherein said first and second one-way trusts prevent transitive trust between each server in said second set of one or more servers. - 9. The system of claim 8 wherein the third set of servers entity to the serviced entity. Other examples include tele- 60 form part of a service provider providing services to the second set of servers. - 10. The system of claim 9 wherein the service provider is operable to provide software distribution to the second set of servers. - 11. The system of claim 9 wherein the second set of servers may store an access control list to determine what entities may access the second set of servers. 8 7 12. The system of claim 11 wherein the access control list enables the third set of servers to access the second set of servers. - 13. The system of claim 8 wherein the first set of servers is connected to one or more of: a public switched telephone 5 network and a data network. - 14. The system of claim 8 wherein the first set of servers has a third one-way trust connection to the third set of servers. * * * *